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Abstract 

Sexual selection is understood to help communicate a message from a signaler to a receiver 

about the signaler’s overall quality, even if it compromises survivability. Plumage coloration of 

birds is a type of ornamentation thought to convey individual quality and influence reproductive 

success for many different species. Many studies have shown that plumage coloration is 

condition dependent and influenced by the environment; yet, few studies have investigated how 

variation in weather during molt impacts ornamental traits. Eastern bluebirds (Sialis sialis) are an 

insectivorous passerine that display sexually dichromatic ultraviolet (UV)-blue structural based 

and chestnut melanin-based plumage. The UV-blue coloration is likely to be sexually selected as 

it is sensitive to nutritional stress, reliably indicates individual quality, and influences 

reproductive success via male-male interactions. The melanin coloration of the breasts of eastern 

bluebirds is less sensitive to environmental conditions during molt and is likely an indicator of 

age but not necessarily mate quality. In my thesis, I examine how annual variation in 

precipitation and temperature during molt (August to October) affects UV-blue and chestnut 

plumage in eastern bluebirds. I do this by 1) following an Alabama population and investigating 

whether plumage coloration tracks weather during molt and 2) using museum specimens dating 

back to 1895 and investigating how geography, weather, and year of specimen collection 

influence plumage coloration. My results demonstrate that, in the non-migratory Alabama 

population, birds displayed more ornamented UV-blue plumage in years following late summers 

with lower temperatures and greater precipitation. In the museum study, birds displayed brighter 

UV-blue plumage (more ornamented) and chestnut-plumage (less ornamented) when collected in 

more easterly locations and in locations with higher average temperature. Overall, the Alabama 

population results suggest that structural based plumage is more affected by climate variation 
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than melanin-based coloration. The museum specimen results suggest that both plumage types 

appear to be affected by geographical location and climate, yet structural coloration appears to be 

more affected by year of specimen collection. 
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Chapter 1: Annual Variation in Precipitation and Temperature During Molt Influence Structural 

Plumage Coloration in Eastern Bluebirds (Sialis sialis)  

 

Abstract 

Annual variation in precipitation and temperature has been shown to affect food availability for 

insectivores and thus may influence condition-dependent sexually selected plumage of 

insectivorous birds. Yet, few studies have investigated how natural variation in weather during 

molt influences ornamental traits. Eastern bluebirds (Sialis sialis) are an insectivorous passerine 

that display sexually dichromatic ultraviolet (UV)-blue structural-based and chestnut melanin-

based plumage. The UV-blue coloration is likely sexually selected as it has been shown to be 

sensitive to nutritional stress, indicate individual quality, and influence reproductive success via 

male-male competitive interactions. Here, I examine whether precipitation and temperature 

during the molt period (August to October) influenced male and female coloration measured 

during the following breeding season at an Alabama field site over a 12-year period. Birds 

displayed more-ornamented UV-blue plumage in years following late summers with lower 

temperatures and greater precipitation. Further, these patterns were stronger in males but, in 

general, consistent between the sexes and age classes. The data suggest that structural-based 

plumage appears to be more affected by climate variation than melanin-based coloration and 

precipitation has stronger effects on structural coloration than does temperature. Overall, this 

study corroborates research suggesting that structural coloration may be more sensitive to 

environmental conditions during molt than melanin coloration and thus be a more reliable 

sexually selected signal. 

 



	 5	

Introduction 

Why any animals would be conspicuous in an environment riddled by predators was a source of 

great debate between Charles Darwin and Alfred Wallace because elaborate conspicuous traits 

should reduce survivorship (Cronin 1993). Darwin argued that these ornamental traits evolve via 

sexual selection; they are often sexually dimorphic and influence access to mates, either via mate 

choice or male-male competitive interactions (Darwin 1871; reviewed in Anderson 1994). 

Ornaments, including avian plumage coloration, are often reliable signals of mate quality, 

because they are costly to produce and maintain (reviewed in Hill and McGraw 2006). Within 

populations, body condition has been shown to be positively correlated with plumage coloration, 

thus the environment the individual experiences during molt may influence ornamentation 

(reviewed in Hill 2006).  

 Avian plumage coloration is produced via two different mechanisms: pigments allocated 

to feathers and feather microstructure. The two common types of plumage pigments are: 1) 

melanins (including eu-melanins and phaeo-melanins) which create black, tan and chestnut 

coloration and 2) carotenoids, which produce colors ranging from yellow to red (McGraw 2006a; 

b). Carotenoids are generally regarded as the most clearly condition-dependent form of plumage 

coloration; the pigments are derived from the diet and thus are directly linked to ingesting food 

(Hill 2002). Melanin coloration, however, are produced de novo and are less affected by 

environmental conditions than carotenoid coloration, although it is possible that access to scarce 

amino acids minerals might limit expression (McGraw 2006a; b). Structural coloration is 

different from pigment-based coloration, as green, blue, purple, and iridescent coloration are 

achieved by reflecting short wavelengths and scattering long wavelengths with the reflective 

keratin in the feather (Prum 2006). Unlike carotenoid pigments, structural plumage coloration is 
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not directly dependent on ingesting nutrients. However, field correlative studies suggest that 

variation in elaborate structural coloration is positively associated with greater body condition 

(Volatinia jacarina; Doucet 2002) and with higher quality and older males (Guiraca caerulea; 

Keyser and Hill 1999; 2000). Moreover, aviary studies using restricted food access have shown 

that structural coloration is influenced by nutritional stress (McGraw et al. 2002; Siefferman and 

Hill 2005a) while melanin ornaments are not (McGraw et al. 2002). 

 For species that undergo a complete molt post-breeding season, food availability can be 

critically important for the acquisition of high-quality plumage (Hill and Montgomerie 1994), 

and many songbird species molt only one time annually, directly after the summer breeding 

season when the energetic cost of molt is at the lowest (Payne 1972). Using a multiple year (11 

year) correlative approach, Reudink et al. (2015) showed the carotenoid-based orange plumage 

of American redstarts (Setophaga ruticilla) is influenced by rainfall during the preceding molt. 

This positive co-variation between precipitation and coloration was attributed to higher 

abundance of insect prey (Reudink et al. 2015).  

Here, I investigate how weather patterns during molt influence plumage coloration of 

Eastern bluebirds (Sialis sialis). Eastern bluebirds are socially monogamous passerines that occur 

year-round in the Southeast, southern Midwest, and along the Atlantic coast of the United States. 

Eastern bluebirds are partial migrants; the migratory populations breed in the northern latitudes 

and over-winter in the southern latitudes, while the populations that breed in the southern 

latitudes do not migrate. Eastern bluebirds are secondary cavity nesters that readily breed in nest-

boxes. Female eastern bluebirds build the nest, lay 3-6 eggs and incubate eggs and brood 

nestlings; however, both male and females feed the young (Pinkowski 1977; Gowaty and 

Plissner 1998). Bluebirds’ diet consists of primarily of terrestrial arthropods and they feed on the 
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ground (Gowaty and Plissner 1998); the arthropods commonly consumed by bluebirds include: 

Orthoptera, Araneae, and Lepidoptera (Pinkowski 1978). Abundance of terrestrial arthropods has 

been shown to be correlated with higher precipitation and stable temperatures (e.g. Williams 

1961). Adult eastern bluebirds molt once annually and replace all plumage each autumn 

following the breeding season (Gowaty and Plissner 1998). Juveniles undergo an incomplete 

molt in late summer and autumn, in which the primaries, secondaries, primary coverts, and alula 

are retained while all other feathers are molted (Pinkowski 1976). 

Eastern bluebirds have ultraviolet (UV)-blue (structural-based) plumage on their entire 

dorsum and chestnut (melanin-based) plumage on their chests (Shawkey et al. 2003; McGraw et 

al. 2004). Males and females are sexually dimorphic: male have brighter and more chromatic 

UV-blue and darker chestnut coloration compared to females (Gowaty and Plissner 1998; 

Shawkey et al. 2005). The chestnut plumage coloration is a combination of phaeo- and eu- 

melanin (McGraw et al. 2004). Structural coloration in eastern bluebirds might be affected by 

inadequate nutrients ingested as feathers are built from molecules derived from food (Hill 2006). 

Plumage coloration is most likely driven by sexual selection for both male and female eastern 

bluebirds. Colorful UV-blue plumage in both males and females is positively associated with 

pairing success, an increased rate of provisioning to nestlings and mates, and higher reproductive 

success (Siefferman and Hill 2003; 2005a; b). Moreover, males with more-ornamented UV-blue 

plumage are mated to females that invest relatively more in offspring care (Ligon and Hill 2010 

a; b). As eastern bluebirds are secondary cavity nesters, establishing a territory (i.e. nest-box) is 

critical for reproductive success. Males with more-ornamented UV-blue plumage are better able 

to compete for access to high-quality territories (Siefferman and Hill 2005b). UV-blue plumage 

coloration is likely condition dependent in both sexes of eastern bluebirds (Siefferman and Hill 
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2005a; c). Male plumage, however, appears to be more sensitive to environmental fluctuation 

than does that of females (Siefferman and Hill 2007; Doyle and Siefferman 2014). Both UV-blue 

and chestnut plumage of males also varies with age, with older males possessing lighter and less 

chromatic chestnut color (i.e. more female-like) and brighter and more chromatic UV-blue color 

(i.e. more male-like; Siefferman et al. 2005). Additionally, chestnut breast coloration may allow 

males to distinguish adult from juvenile conspecifics (Ligon and Hill 2009). Although research 

shows that males with both darker chestnut (melanin-based coloration) and brighter UV-blue 

(structurally-based coloration) breed earlier and feed offspring more often (Siefferman and Hill 

2003), this study used an analysis that combined the two plumage types into one variable. Thus, 

the ability to tease about the signaling roles of the two feather types is limited. Further, far less 

research has focused on role of chestnut (melanin-based) than UV-blue (structurally-based) 

coloration in eastern bluebirds (L. Siefferman, personal communication). Yet, to date, there is 

little compelling evidence that chestnut coloration is as important as UV coloration in signaling 

mate quality or body condition (L. Siefferman, personal communication).  

In this study, my objective was to document plumage coloration variation in an eastern 

bluebird population over a 12-year period to investigate associations between weather during 

molt and plumage ornamentation during the following year’s breeding season. The population 

occurs in Auburn, Al and is non-migratory. Individuals commence breeding between March and 

April and can have up to three successful broods each summer; birds begin to molt between 

August and October of that same year (L. Siefferman, personal communication). I hypothesized 

that birds would be more ornamented after years with high precipitation and moderate 

temperatures during molt. The assumption is that arthropod abundance would be greater in years 

with rain and stable temperatures (reviewed in Williams 1961). I also predict that, because the 
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UV-blue coloration is more closely tied to sexual selection than is chestnut coloration in 

bluebirds, UV-blue coloration will be more closely associated with weather during molt than will 

melanin coloration. Further, I predict that males would be more sensitive to environmental 

fluctuations than females.   

 

Methods 

Researchers from Auburn University studied a nest-box breeding population of eastern bluebirds 

in Lee County, Alabama (32.5889° N, 85.3963° W) from 1999 to 2015 (excluding 2009, 2010, 

2013, and 2014). Nest-boxes were monitored weekly for nest building, and when complete nests 

were found, nests were monitored daily from clutch initiation until fledging and all pairs were 

followed throughout the breeding season. Adults were captured during the breeding season 

(March-April) either via mistnet or trapped at the nest. Researchers marked each bird with a 

unique combination of three colored plastic bands and one U.S. Fish and Wildlife Service 

aluminum band.  

In most years, researchers estimated the age of all newly banded birds as either Second 

Year (SY) (having undergone only one post-nestling molt) or After Second Year (ASY) on the 

shape of the 10th primary feather (Pitts 1985). Like all primary feathers, the 10th primary feather 

is not molted with the rest of the juvenal plumage and instead is retained from the natal plumage 

(Pitts 1985; Pinkowski 1976). Birds can be aged as SY or ASY by the amount of wear on the 

10th primary (Pitts 1985). Males were labeled as SY if the 10th primary feather was frayed and 

not sharply pointed, and the color was grayish brown, or are labeled ASY if the 10th primary 

feather was sharply pointed and the pigment area is distinctly blue (Pitts 1985). Females were 

labeled as SY if the 10th primary feather was frayed and not sharply pointed, the feather is non-
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symmetrical, and was pigmented brown, or as ASY if the tip of the 10th primary feather was 

distinctly pointed, shows some blue color, and was symmetrically shaped (Pitts 1985). Eastern 

bluebirds undergo an annual, complete molt post breeding season in their second year of life and 

every year following.  

 

Color Analysis 

At time of capture, 9 breast and 9 rump feathers were collected from each bird. Feather samples 

were carefully plucked from the same location on all birds. Feathers were stored in separate 

envelopes in a climate-controlled environment until spectrophometric analyses were conducted. 

Feathers were placed on low reflectivity black paper, mimicking the way feathers naturally lay 

on the bird. Spectral data was recorded with an Ocean Optics S2000 spectrometer (range 250-

880nm: Dunedin, Florida, USA) using a micron fibre-optic probe at a 90-degree angle to the 

feather surface (see detailed methods in Siefferman and Hill 2003). For each individual, five 

measurements were recorded from each plumage region and then averaged. 

 Reflectance data were summarized by calculating two standard descriptors of reflectance 

spectra: chroma and brightness. For the UV-blue rump feathers, UV-chroma, a measure of 

spectral purity, was calculated as the ratio of the UV reflectance (300-400 nm) to the total 

reflectance (300-700 nm). For the chestnut breast feathers, red-chroma was calculated as the 

ratio of the total reflectance in the orange-red range (500-700 nm). Higher chroma scores for 

each body region is considered more-ornamented (Siefferman and Hill 2003). Brightness, or total 

amount of light reflected by the feather, is the summed reflectance from 300 to 700 nm. For UV-

blue plumage, a higher brightness value is considered more-ornamented while, for chestnut 

plumage, a lower brightness score is considered more-ornamented (Siefferman and Hill 2003).  
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Weather Data 

I collected precipitation and temperature data for the Auburn, AL breeding site from the National 

Oceanic and Atmospheric Administration (NOAA). I obtained weather data from August-

October 1998-2014 (excluding 2008, 2009, 2012, and 2013 due to lack of feather data) to relate 

the weather data to feather color in the following year when feathers were collected. The mean 

temperature and precipitation was quantified for each month based on the daily output data 

provided by NOAA. I standardized precipitation and temperature values by subtracting the 

overall mean and dividing by the standard deviation (Schielzeth 2010). 

 

Statistical Analyses 

All results were analyzed using SPSS v. 23 (IBM 2015). Data was split by sex (male and female) 

and by age (SY and ASY). I constructed a series of mixed models that related one weather 

variable (e.g. standardized mean monthly rainfall and mean monthly temperature for August-

October in the year prior to feather collection; independent variable) to each plumage variable 

(e.g. UV-blue brightness, UV-chroma, chestnut brightness, and chestnut red-chroma; dependent 

variables) in separate models. For example, a full mixed model for the month of August would 

include one feather variable as the dependent variable (e.g. UV-blue brightness), year of feather 

collection as a random variable, and either weather (e.g. mean precipitation during Sept) as a 

covariate. For the total set of models, I included all combinations of previous variables for each 

month for a total of 48 mixed models per sex. I used Akaike Information Criterion (AIC) model 

fitting to determine the best models, models that did not differ by >4 AIC points were considered 

equal. 
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Results 

Covariation between Precipitation and Temperature 

In both August and September, there was a non-significant negative trend between temperature 

and precipitation, however, there was no trend in October (Table 1).  

 

Structurally-based Rump Coloration 

The best models explaining variation in UV-blue brightness for SY males and ASY females 

included effects of mean precipitation in August (Table 2, 3), such that birds were brighter 

following years of high precipitation. Among ASY males and SY females, UV-blue brightness 

was best predicted by both mean precipitation and mean temperature in August (Tables 2, 3; 

Figures 1, 2a, d), such that birds were brighter following years of high precipitation and low 

temperatures in August.  

 The best model of weather to explain variation in UV chroma of both ASY and SY males 

included September temperature, such that males were more colorful following cooler 

Septembers (Table 2, Figure 3), however, there were no significant temperature models to 

explain female UV chroma, regardless of age (Table 2). UV chroma of SY females was 

significantly positively related to precipitation in September (Table 3), but precipitation was not 

significantly related to ASY female or male color (Tables 2, 3).  

 

Melanin-based Breast Coloration 

The only model that significantly explained variation in breast brightness included October 

temperature for SY females, such that females were more ornamented following warmer 
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Octobers (Table 3). No other weather variables significantly predicted breast brightness or red 

chroma, regardless of sex or age (Tables 2, 3).  

 

Discussion 

Temperature and precipitation at time of molt were associated with structurally-based UV-blue, 

but not melanin-based chestnut, feather coloration of eastern bluebirds measured in the following 

spring. Temperature and precipitation per month were strongly negatively correlated in August 

and weakly so in September, such that in years of high temperatures, there was lower late 

summer precipitation. In general, greater precipitation during August was the best predictor of 

structural plumage ornamentation and most closely associated with rump brightness, regardless 

of age or sex. Birds had more-ornamented UV-blue coloration in years with wet Augusts. 

Moreover, lower mean temperature in August was significantly associated with an increase in 

rump brightness in both females and males, but the strength of the relationships varied with age 

class. Further, lower temperature in September was significantly associated with increased UV 

chroma of males, regardless of age. However, there were few weather models that predicted 

variation in melanin coloration, only one model of SY females showed a significant association 

with breast brightness and the trends were opposed of those predicted, as young females were 

less ornamented after cooler Octobers. Based upon the results, structural-based plumage appears 

to be 1) more affected by climate variation than melanin-based coloration and 2) more influenced 

by precipitation than temperature. Finally, brightness of structural coloration appears more 

sensitive than chroma, in general. However, precipitation and temperature cannot be fully 

separated, particularly for August, wetter years also tended to have lower mean temperature. 
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 During the month of August, across the 12 years of this study, mean rainfall was 

especially variable, with August mean rainfall ranging from 0.0869 to 0.661 cm. Moreover, 

across age classes and sexes, precipitation was a better predictor than temperature of structural 

plumage coloration. This pattern is most likely the result of greater insect / arthropod abundance 

resulting from higher precipitation (reviewed in Williams 1961). Because precipitation causes a 

fluctuation of insect abundance, structural-based plumage could be negatively affected by lack of 

food due to lower precipitation levels, while melanin coloration was unaffected. In field studies, 

structurally-based plumage has been shown to be a condition-dependent, sexually selected signal 

of male quality (Doucet 2002; Siefferman and Hill 2005a). The honesty behind this type of 

plumage may be due to the costs associated with producing very precisely arranged keratin 

nanostructure (Shawkey et al. 2003). Conversely, it appears that melanin-based plumage is more 

regulated by hormones and physiology and less by the environment (reviewed in McGraw 2008). 

Finally, experimental work conducted with male brown-headed cowbirds (Molothrus ater) 

showed that their structurally-based but not melanin-based plumage coloration is adversely 

affected by nutritional stress during molt (McGraw et al. 2002). My correlative data corroborate 

those experimental studies, structurally-based coloration of eastern bluebirds appears to be more 

influenced by the environment during molt than does the melanin-based plumage. 

 For eastern bluebirds, brightness of structural coloration appears to be more sensitive to 

environmental variation during molt than UV-chroma, the measure of spectral purity. Regardless 

of age or sex, birds molting during cooler, wetter late summers had brighter structurally-based 

plumage; while only in males, was high temperature in September associated with lower UV 

chroma. The mechanism by which cool, wet late summer weather (and putatively greater access 

to arthropod prey) increases plumage brightness (but not UV chroma) remains unclear. Non-
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iridescent structurally-based colors are produced by coherent scattering of light particles from the 

precise arrangement of elements within the microstructure of a feather (Prum 2006). UV-blue 

structural barb feathers of eastern bluebirds have a keratin cortex and a spongy medullary layer 

with large central vacuoles surrounded by small granules of melanin (Shawkey et al. 2003). That 

structural colors are negatively affected by nutritional stress (Siefferman and Hill 2005a; 

McGraw et al. 2002) suggests that saturation of colors may depend on regularity of elements 

within the microstructure (Shawkey et al. 2003), but how nutritional condition changes 

structurally based coloration remains poorly understood (Prum 2006). The differential effects of 

weather on brightness and UV chroma in my study suggest that production of these two color 

descriptors have different mechanisms or pathways. It may be that food availability has a greater 

impact on keratin cortex thickness (associated with brightness) and has less effect on the precise 

arrangement of the medularly layer UV chroma (associated with UV chroma; Shawkey et al. 

2003). Future work should lead to a better understanding of how food stress during feather 

development influences variation in non-iridescent plumage coloration. 

Temperature, while negatively associated with precipitation in August and September, 

did not predict plumage coloration to the extent that precipitation did (across both sexes and age 

classes). In fact, temperature was only a good predictor of coloration of male UV chroma 

coloration. Indeed, UV-blue coloration has been shown to be more sensitive to environmental 

conditions among male than female bluebirds (Siefferman et al. 2005; Siefferman and Hill 

2005c; Doyle and Siefferman 2014). Greater condition dependence of male color is logical as 

males have brighter and more chromatic UV-blue structural color than females (Shawkey et al. 

2005) and thus creating more elaborate color maybe more costly to produce or involve more 

structural complexity. Because of this, male plumage may be more sensitive to changes in 
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weather compared to females. Further, this may translate into greater impacts on male than 

female fitness, as color influences competition between males and thus likely influences access 

to females (Siefferman and Hill 2005c).  

The plumage coloration of juveniles and adults appeared to be similarly influenced by 

weather during molt. Although birds in different age classes molt tail feathers at different times 

(Pitts 1985), the extent to which the ages classes differ in timing of body feathers is less clear 

and my study measured body feather coloration. Juveniles appear to molt from natal to SY 

plumage sometime in late summer, but often earlier than adult molt (L. Siefferman, personal 

communication). Because of this difference in timing of molt of rump and breast plumage, I 

thought it possible that weather would have age-class dependent effects on plumage coloration. 

However, the only weather variable that produced differences between the age classes was 

temperature in August, wherein only the rump brightness of SY female and ASY male were 

significantly negatively associated with temperature. For rump brightness, all age classes and 

sexes were positively associated with precipitation. It may be that more extreme differences 

would have been found if I had measured wing or tail feathers (retained from the natal plumage) 

as was done with the redstarts that Reudink et al. (2015) studied. 

It is interesting that weather in August and September should be a better predictor of 

color than weather in October, because ASY bluebirds from this population, when brought into 

captivity, molted most contour (body) feathers in October (Siefferman and Hill 2005a). It may be 

that hot, dry weather 6-8 weeks earlier has the greatest influences on arthropods in October. 

Timing of molt for juveniles (that are SY in the following spring) is less clear, field observations 

suggest they may start molting contour feathers in summer and that hatching time should 

influence timing of molt (L. Siefferman, personal communication). Thus, hatching time could 
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influence how in SY females cooler Octobers were found to increase brightness in melanin 

coloration (reduced ornamentation), as later hatching birds could delay molt. This one 

relationship with melanin coloration was opposite of my hypothesis, as I only expected UV-blue 

structural coloration to be effected. In other species, migratory birds are expected to face 

tradeoffs between investing in pre-migration fattening, migration and molt (Norris et al. 2004) 

and age can influence migration onset (Newton 2010). Because this population of bluebirds does 

not migrate, while other populations do, it would be interesting to compare how weather 

preceding and during molt influence plumage coloration in migratory and non-migratory 

populations of bluebirds. Indeed, current molt chronology studies have been conducted in many 

waterfowl species (e.g. Miller 1986). Among passerines, Cassin’s Finches (Carpodacus cassinii) 

of different age classes vary in timing of molt in relation to fall migration departure (Samson 

1976).  

 My results suggest that weather during molt can influence the development of sexually 

selected traits for following breeding season. Indeed, many studies have shown how plumage 

coloration, specifically UV-blue plumage, is associated with reproductive output (Siefferman and 

Hill 2003; Siefferman and Hill 2005a). My findings indicate that, in the future, as climate trends 

towards hotter temperatures (IPCC Synthesis Report 2014), bluebirds will display duller 

structurally based UV-blue coloration. In both sexes, brightness will likely decrease and, among 

males, UV chroma will decrease. However, precipitation was positively associated with UV-blue 

brightness but models that predict how precipitation will change in the future are more complex 

and varies considerably with region (IPCC Synthesis Report 2014). Thus, it may be difficult to 

project how plumage coloration with change in the future.   
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 In conclusion, after following a population of eastern bluebirds for a 12-year period, my 

research demonstrates associations between UV-blue structural plumage coloration and weather 

during molt. Birds tended to display more ornamented UV-blue coloration following late 

summer-autumns of high precipitation and low temperature. These associations are likely due to 

higher arthropod prey abundance during wetter and cooler years. This is corroborated by studies 

demonstrating that structurally-based, but not melanin-based plumage, has been shown to be 

condition dependent. This work illustrates the importance of long-term biological data and sheds 

light on how climate change may influence sexually selected traits.  
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 August Precipitation September Precipitation October Precipitation 

August Temperature -0.511 (0.074)   

September Temperature  -0.261 (0.390)  

October Temperature    0.049 (0.874) 

Table 1 Pearson’s bivariate correlations for monthly precipitation and temperature all weather 

data are standardized (n = 13 years).  
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Model Category (Males) AIC ΔAIC Df F-value p-value 
ASY Rump Brightness  	 	 	   
Stand Mean Temp September 1410.812 0 1,10.510 0 0.987 
Stand Mean Temp October 1410.567 0.245 1,12.036 0.061 0.809 
Stand Mean Precipitation October 1410.389 0.423 1,9.318 0.312 0.59 
Stand Mean Precipitation September 1409.952 0.86 1,11.053 0.608 0.452 
Stand Mean Precipitation August 1406.778 4.034 1,8.831 5.54 0.044 
Stand Mean Temp August 1404.486 6.326 1,11.733 9.168 0.011 
SY Rump Brightness  	 	 	   
Stand Mean Precipitation September 771.144 0 1,3.880 0.231 0.657 
Stand Mean Temp September 770.918 0.226 1,3.969 0.071 0.804 
Stand Mean Precipitation October 770.419 0.725 1,3.912 0.605 0.481 
Stand Mean Temp October 769.304 1.84 1,3.925 2.236 0.21 
Stand Mean Temp August 767.867 3.277 1,4.091 4.248 0.107 
Stand Mean Precipitation August 765.421 5.723 1,3.902 11.783 0.028 
ASY Rump UV Chroma  	 	 	   
Stand Mean Temp August -1123.629 0 1,10.185 0.907 0.363 
Stand Mean Precipitation September -1124.658 1.029 1,7.125 1.764 0.225 
Stand Mean Precipitation August -1124.794 1.165 1,7.80 2.244 0.173 
Stand Mean Temp October -1124.858 1.229 1,12.373 1.776 0.207 
Stand Mean Precipitation October -1126.71 3.081 1,3.450 6.956 0.067 
Stand Mean Temp September -1131.29 7.661 1,14.661 11.11 0.005 
SY Rump UV Chroma  	 	 	   
Stand Mean Precipitation September -678.458 0 1,3.758 0.006 0.941 
Stand Mean Precipitation October -678.972 0.514 1,3.832 0.134 0.734 
Stand Mean Temp August -679.069 0.611 1,3.885 0.045 0.842 
Stand Mean Precipitation August -679.875 1.417 1,4.013 1.01 0.372 
Stand Mean Temp October -681.292 2.834 1,3.679 2.585 0.137 
Stand Mean Temp September -687.037 8.579 1,3.839 24.27 0.009 
ASY Breast Brightness  	 	 	   
Stand Mean Temp September 960.014 0 1,11.920 0.024 0.881 
Stand Mean Precipitation October 959.93 0.084 1,10.082 0.025 0.876 
Stand Mean Temp October 959.789 0.225 1,13.511 0.018 0.896 
Stand Mean Temp August 959.498 0.516 1,11.101 0.688 0.424 
Stand Mean Precipitation September 959.431 0.583 1,11.379 0.35 0.566 
Stand Mean Precipitation August 958.434 1.58 1,9.476 1.925 0.197 
SY Breast Brightness  	 	 	   
Stand Mean Precipitation October 546.508 0 1,3.939 0 0.99 
Stand Mean Temp September 546.345 0.163 1,4.005 0.167 0.704 
Stand Mean Temp August 545.567 0.941 1,4.158 0.821 0.414 
Stand Mean Precipitation August 544.978 1.53 1,4.189 1.675 0.262 
Stand Mean Precipitation September 544.878 1.63 1,3.741 2.647 0.184 
Stand Mean Temp October 543.14 3.368 1,3.637 5.72 0.081 
ASY Breast Red Chroma  	 	 	   
Stand Mean Precipitation September -914.653 0 1,10.385 0.213 0.654 
Stand Mean Temp September -914.653 0 1,10.385 0.213 0.654 
Stand Mean Precipitation August -915.211 0.558 1,10.194 0.986 0.344 
Stand Mean Temp August -915.211 0.558 1,10.194 0.986 0.344 
Stand Mean Precipitation October -916.587 1.934 1,10.070 2.472 0.147 
Stand Mean Temp October -916.587 1.934 1,10.070 2.472 0.147 
SY Breast Red Chroma  	 	 	   
Stand Mean Temp October -562.665 0 1,3.988 0.177 0.696 
Stand Mean Temp August -563.048 0.383 1,3.989 0.284 0.622 
Stand Mean Precipitation September -563.284 0.619 1,3.952 1.226 0.331 
Stand Mean Precipitation August -563.473 0.808 1,4.034 0.839 0.411 
Stand Mean Precipitation October -563.599 0.934 1,3.979 1.135 0.347 
Stand Mean Temp September -567.12 4.455 1,4.046 1.854 0.244 

Table 2 Summary of a 
models explaining 
variation in rump 
brightness, rump UV 
chroma, breast 
brightness, and breast 
red chroma for ASY 
and SY male Eastern 
Bluebirds.  
 
Bolded numbers 
correspond to models 
with significant 
relationships. Year was 
included as a random 
effect in all models. 
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Model Category (Females) AIC ΔAIC Df F-value p-value 
ASY Rump Brightness  	 	 	   
Stand Mean Temp September 1792.322 0 1,12.195 0.004 0.952 
Stand Mean Precipitation September 1792.07 0.252 1,11.502 0.302 0.593 
Stand Mean Temp October 1792.061 0.261 1,13.323 0.229 0.64 
Stand Mean Precipitation October 1791.947 0.375 1,10.312 0.482 0.503 
Stand Mean Temp August 1789.977 2.345 1,10.381 2.878 0.12 
Stand Mean Precipitation August 1786.276 6.046 1,8.049 10.378 0.012 
SY Rump Brightness  	 	 	   
Stand Mean Precipitation October 649.171 0 1,5.214 0.172 0.695 
Stand Mean Precipitation September 649.138 0.033 1,4.770 0.636 0.463 
Stand Mean Temp September 648.555 0.616 1,5.064 0.856 0.397 
Stand Mean Temp October 646.284 2.887 1,4.261 4.548 0.096 
Stand Mean Precipitation August 645.007 4.164 1,4.237 7.235 0.051 
Stand Mean Temp August 644.884 4.287 1,4.854 6.518 0.053 
ASY Rump UV Chroma  	 	 	   
Stand Mean Temp August -1442.964 0 1,12.359 0.008 0.93 
Stand Mean Temp September -1443.101 0.137 1,13.311 0.07 0.796 
Stand Mean Temp October -1443.138 0.174 1,14.535 0.043 0.839 
Stand Mean Precipitation September -1443.163 0.199 1,11.448 0.22 0.648 
Stand Mean Precipitation August -1443.269 0.305 1,11.359 0.367 0.557 
Stand Mean Precipitation October -1443.325 0.361 1,10.925 0.448 0.517 
SY Rump UV Chroma  	 	 	   
Stand Mean Temp September -512.23 0 1,5.541 0.022 0.888 
Stand Mean Precipitation August -512.445 0.215 1,5.439 0.033 0.861 
Stand Mean Temp October -512.563 0.333 1,4.996 0.428 0.542 
Stand Mean Temp August -512.912 0.682 1,4.998 0.521 0.503 
Stand Mean Precipitation October -514.434 2.204 1,5.021 3.248 0.131 
Stand Mean Precipitation September -517.682 5.452 1,2.754 21.947 0.022 
ASY Breast Brightness  	 	 	   
Stand Mean Precipitation October 1668.044 0 1,10.612 0.026 0.876 
Stand Mean Temp September 1667.95 0.094 1,12.452 0.023 0.881 
Stand Mean Temp October 1667.924 0.12 1,13.313 0.008 0.928 
Stand Mean Precipitation September 1667.33 0.714 1,11.562 0.711 0.416 
Stand Mean Precipitation August 1665.474 2.57 1,10.031 3.115 0.108 
Stand Mean Temp August 1665.093 2.951 1,11.025 3.647 0.083 
SY Breast Brightness  	 	 	   
Stand Mean Precipitation October 600.565 0 1,5.234 0.026 0.877 
Stand Mean Temp September 600.073 0.492 1,5.134 0.552 0.49 
Stand Mean Precipitation September 599.553 1.012 1,4.987 1.668 0.253 
Stand Mean Temp August 597.381 3.184 1,5.077 4 0.101 
Stand Mean Precipitation August 597.236 3.329 1,4.916 4.532 0.087 
Stand Mean Temp October 596.163 4.402 1,4.551 7.465 0.046 
ASY Breast Red Chroma  	 	 	   
Stand Mean Precipitation August -1227.955 0 1,11.015 0.005 0.944 
Stand Mean Temp September -1227.972 0.017 1,11.490 0.001 0.975 
Stand Mean Temp October -1228.061 0.106 1,11.667 0.08 0.782 
Stand Mean Temp August -1228.116 0.161 1,11.321 0.157 0.699 
Stand Mean Precipitation October -1228.617 0.662 1,11.023 0.69 0.424 
Stand Mean Precipitation September -1228.673 0.718 1,11.213 0.739 0.408 
SY Breast Red Chroma  	 	 	   
Stand Mean Temp September -438.053 0 1,4.903 0.001 0.974 
Stand Mean Precipitation October -438.066 0.013 1,4.916 0.015 0.908 
Stand Mean Temp October -438.791 0.738 1,4.680 0.814 0.411 
Stand Mean Precipitation September -438.804 0.751 1,4.539 1.31 0.309 
Stand Mean Precipitation August -438.934 0.881 1,4.767 0.726 0.435 
Stand Mean Temp August -441.384 3.331 1,4.697 4.247 0.098 

Table 3 Summary of all 
models explaining 
variation in rump 
brightness, rump UV 
chroma, breast 
brightness, and breast 
red chroma for ASY 
and SY female Eastern 
Bluebirds.  
 
Bolded numbers 
correspond to models 
with significant 
relationships. Year was 
included as a random 
effect in all models. 
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        A 

B

C 

D 

Figure 1 Relationships 
between mean rump 
brightness and August 
precipitation for a) 
female SY, b) female 
ASY, c) male SY and d) 
male ASY eastern 
bluebirds. Lines 
indicate significant 
relationships.  
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         A 

B 

D 

C 

Figure 2 Relationship 
between mean rump 
brightness and August 
temperature for a) 
female SY, b) female 
ASY, c) male SY and d) 
male ASY eastern 
bluebirds. Lines 
indicate significant 
relationships.  
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D 

C 

B

A 
Figure 3 Relationship 
between mean rump 
UV chroma and 
September temperature 
for a) female SY, b) 
female ASY, c) male 
SY and d) male ASY 
eastern bluebirds. Lines 
indicate significant 
relationships.  
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Chapter 2: Museum Data Reveal Variation in Geography and Weather During Molt Influencing 

Plumage Coloration of Eastern Bluebirds (Sialis sialis) 

 

Abstract 

Museum specimens offer a unique opportunity to analyze phenotypic changes through time and 

over broad geographic ranges. Eastern bluebirds (Sialis sialis) are an insectivorous passerine that 

display ultraviolet (UV)-blue structural-based and chestnut melanin-based plumage. The UV-

blue body coloration of eastern bluebirds is likely sexually selected as it has been shown to be 

sensitive to nutritional stress, indicates mate quality, influences male-male competitive 

interactions, and is correlated with reproductive success. The melanin coloration of the breasts of 

eastern bluebirds has been shown to be less sensitive to environmental conditions during molt 

and is likely an indicator of age but not necessarily mate quality. In my study, I examine whether 

geographic location, weather during the molt period (August to October), and year of specimen 

collection influenced male plumage coloration of eastern bluebirds using Smithsonian museum 

specimens dating back to 1895. Eastern bluebirds displayed brighter UV-blue plumage (more 

ornamented) and chestnut-plumage (less ornamented) when collected in more easterly locations 

and in locations with higher average temperature. Moreover, birds collected more recently 

display more-ornamented UV-blue coloration, suggesting that either color fades with time or 

birds are more ornamented in recent decades. The data suggest that structural-based plumage 

appears to be more affected by year of collection compared to melanin-based plumage, while 

both plumages appear to be affected by geographical location and climate. Overall, this study 

corroborates research suggesting that museum specimens could be an asset to large scale 

geographic studies and research on climate change.  
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Introduction 

Plumage coloration is often considered a classic sexually selected trait and many species of birds 

have elaborate and dimorphic plumage (reviewed in Hill and McGraw 2006). Sexually selected 

traits are often physiologically costly and expected to be environmentally plastic (Andersson 

1994). Because feather ornamentation is often energetically expensive (reviewed in Dale 2006), 

it is expected that the high-quality individuals will produce and maintain elaborate plumage and 

therefore can honestly signal male quality (Higham 2013; Biernaskie et al. 2014).  

If plumage coloration is an honest signal of male quality, within-species plumage 

coloration may be expected to vary geographically and be associated with variation in climate- as 

climate should influence food availability. Geographical differences in phenotypic traits are 

expected across species’ ranges of any given species, as habitats can change rapidly with 

latitude, longitude, and landscape (Allen 1877; Bergmann 1847) and because populations that are 

more distant geographically should share fewer genes (Huggett 2004). Climate is an important 

environmental variable that varies with latitude and longitude. Mean temperature is relatively 

stable between 25°S and 25°N, and decreases with increased northern latitude due to reduced 

solar radiation (reviewed in Stevens 1989; Gaston and Chown 1999). Precipitation also varies 

with latitude and tends to decrease when increasing towards northern latitudes (Gaston and 

Chown 1999).  

Little research has focused on how sexually selected ornaments, especially plumage 

coloration, vary with geographic gradients (reviewed in Friedman and Remes 2016). Yet, 

theoretical models and empirical data suggest that there is a great diversity of variation in the 

strength of sexual selection within conspecifics or closely related species (reviewed in Wiens 

2001). For example, barn swallows (Hirundo rustica) exhibit a great deal of geographic variation 
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in body size, length of outer tails and ventral color (Dor et al. 2012; Hasegawa et al. 2013; 

Scordato and Safran 2014), and these two plumage traits are the subject of sexual selection 

research in several populations. Indeed, recent evidence suggests that localized sexual selection 

is the principal driver of phenotypic divergence between closely related swallow subspecies that 

vary geographically (Wilkins et al. 2016). In addition, melanin coloration in barn swallows 

appears to be, in-part, based on timing of molt; higher-quality individuals that delayed molting 

until after migrating towards their wintering grounds produced more-ornamented feathers (Norris 

et al. 2009). Moreover, American Redstarts (Setophaga ruticilla) with higher reproductive output 

tend to delay molting until the wintering grounds and produce less-ornamented orange color than 

birds that molted on the breeding grounds, likely due to lowered carotenoid availability (Norris 

et al. 2004). Together, these results suggest that geographic variation between populations, as 

well as resources available at the location of molt, play an important role in shaping color 

variation.  

Museum specimens are particularly useful for investigations of how ornamental traits 

within species vary with geographic and climatic trends because they allow researchers to 

measure plumage coloration of many individuals over a large geographic range. However, 

museum skins vary tremendously in the date that the animals were collected and thus there may 

be changes in plumage over time that could be caused by multiple factors. First, it is possible that 

study skins have change in coloration while in the collection due to fading, degradation of 

feathers, or accumulation of dust or dirt (e.g. Doucet and Hill 2009). Second, it may be that 

species or populations of birds have change in ornamentation over time due to changes in 

strength of sexual selection (e.g. Galeotti et al. 2009). Finally, researchers need to address 
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whether plumage variation of preserved skins mimics that of live birds (e.g. Doucet and Hill 

2009). 

Recent research has evaluated how well museum specimens represent plumage color 

variation measured from wild birds and found that they accurately represent plumage variation in 

wild birds (Doucet and Hill 2009). Using long-tailed manakins (Chiroxiphia linearis), which 

have structural-, melanin-, and carotenoid-based plumage, Doucet and Hill (2009) found that 

reflectance spectra collected from museum specimens accurately represents variation in wild bird 

coloration. Carotenoid-based plumage brightness appears to fade considerably with time as 

specimens collected in the most recent years have greater spectral reflectance (Doucet and Hill 

2009). The brightness of the melanin- and structural-based plumage did not significantly change 

with specimen age; however, birds collected earlier had lower red chroma (melanin-based 

plumage) and lower UV chroma (structurally-based) reflected proportionately less at UV 

wavelengths (Doucet and Hill 2009). These authors suggested that some of the color degradation 

of the skins could be attributed to accumulation of chemicals, bacteria, or physical damage; 

however, differences aside, the authors were able to describe important seasonal and geographic 

variation trends in the long-tailed manakin coloration.  

Although it is possible that plumage color of museum skins can degrade via fading, 

feather wear, or accumulation of debris, it is also possible that selective forces have changed 

plumage coloration through time. Galeotti et al. (2009) used 281 museum specimens of the scops 

owl (Otus scops) collected over 137 years to show positive trends where birds collected in past 

decades had pale-red coloration but more recent specimens tend to have dark-reddish/brown 

plumage. The trend in scops owl coloration was described as increasing density of both 

phaeomelanin and eumelanin pigments within feathers over time (Galeotti et al. 2009). 
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Moreover, the authors argue that this change in melanin coloration was not associated with 

museum fading, as researchers concluded the shift was most likely due to selective pressures 

(Galeotti et al. 2009). Indeed, museum specimen data suggest that melanin-based coloration is 

more stable than structurally- or carotenoid-based plumage (Doucet and Hill 2009; Galeotti et al. 

2009). 

In this study, my objective was to investigate associations between plumage coloration of 

male eastern bluebirds (Sialis sialis) and weather and geographic location during molt using 

museum specimens from a 100-year time span. I hypothesize that plumage coloration will be 

influenced by geography (latitude and longitude). I predict that birds breeding in more southern 

latitudes will be more colorful because greater temperature and precipitation may increase prey 

abundance and food quality during molt. Moreover, birds in the more southern latitudes do not 

migrate (Figure 1; National Gap Analysis Program) and thus should not be constrained by 

overlap between migration and molt (Norris et al. 2004; Reudink et al. 2008). I also hypothesize 

that plumage coloration may fade after collection and thus predict that specimens collected 

earlier may show reduced brightness and chroma values for both structurally and melanin-based 

plumage coloration.  

 

Methods 

Study Species 

Eastern bluebirds are socially monogamous passerines that are partial migrants. Bluebirds occur 

year-round in the Southeast, south Midwest United States, and along the Atlantic and Gulf coasts 

(Figure 1; USGS National Gap Analysis Program). Eastern bluebirds are secondary cavity 

nesters that readily breed in nest-boxes when provided. Female eastern bluebirds build the nest, 
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lay 3-6 eggs and incubate eggs for 12-14 days per nest, and brood the nestlings; however, both 

male and females feed the young (Pinkowski 1977). Bluebirds’ diet consists of terrestrial 

arthropods in the orders Orthoptera, Araneae, and Lepidoptera (Pinkowski 1978).  

 Eastern bluebirds molt annually in the late summer and early fall following the spring-

summer breeding season. Males and females are sexually dimorphic: male eastern bluebirds 

display brighter UV-blue structurally-based plumage on their heads, backs, rumps, wings, and 

tails and darker chestnut melanin-based plumage on their breasts compared to females (Gowaty 

and Plissner 1998). Plumage coloration is most likely driven by sexual selection for both male 

and female eastern bluebirds (Siefferman and Hill 2003; 2005a; b). The UV-blue body coloration 

of eastern bluebirds is likely sexually selected as it has been shown to be sensitive to nutritional 

stress (Siefferman and Hill 2005a; 2007), indicates mate quality (Siefferman and Hill 2003; 

2005a) influences male-male competitive interactions (Siefferman and Hill 2005b), and is 

correlated with reproductive success (Siefferman and Hill 2003; 2005a). Structural coloration in 

eastern bluebirds may be affected by inadequate nutrients because feathers are built from 

molecules derived from food (Hill 2006; Shawkey et al. 2003). The melanin coloration of the 

breasts of eastern bluebirds has been shown to be less sensitive to environmental conditions 

during molt (Author, Chapter 1) and is likely an indicator of age (Siefferman et al. 2005) but not 

necessarily mate quality. 

 

Color Analysis 

One researcher, Dr. Lynn Siefferman, visited the Smithsonian Museum (DC, USA) and 

measured specimens ranging from 1822 to 1996. Museum specimen data included: sex, location 
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of collection (county and state), date of collection (Figure 1). Latitude and longitude data based 

on locality were determined post-collection.  

Plumage coloration was measured via an Ocean Optics S2000 spectrometer (range 250-

880nm: Dunedin, Florida, USA) using a micron fibre-optic probe at a 90-degree angle to the 

feather surface (see detailed methods in Siefferman and Hill 2003). Spectral data measurements 

were taken from each museum specimen in the same location on the bird. For each individual, 

she recorded plumage coloration of the melanin pigment-based breast feathers and the UV-blue 

structural coloration from the rump feathers five times and averaged the measurement per body 

region.  

Reflectance data were summarized by calculating two standard descriptors of reflectance 

spectra: chroma and brightness. For the UV-blue rump feathers, UV-chroma, a measure of 

spectral purity, was calculated as the ratio of the UV reflectance (300-400 nm) to the total 

reflectance (300-700 nm). For the chestnut breast feathers, red-chroma was calculated as the 

ratio of the total reflectance in the orange-red range (500-700 nm). Higher chroma scores for 

each body region is considered more-ornamented (Siefferman and Hill 2003). Brightness, or total 

amount of light reflected by the feather, is the summed reflectance from 300 to 700 nm. For UV-

blue plumage, a higher brightness value is considered more-ornamented while, for chestnut 

plumage, a lower brightness score is considered more-ornamented (Siefferman and Hill 2003).  

 

ESRI ArcMap GIS  

In ESRI ArcMap GIS Desktop, distribution data was obtained from the USGS National Gap 

Analysis Program for the eastern bluebird. A vector polygon Shape file, datum NAD83, of the 

United States (States.shp) was used as a base map (obtained from Appalachian State Department 
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of Geography and Planning). I added in the coordinates for each museum specimen in the study 

to display where they were collected. I used these data to determine whether each specimen was 

a from a migratory or non-migratory population (Figure 1).  

 

Weather Data 

I collected precipitation and temperature data per climate division (Figure 2) for the continental 

U.S. from the National Oceanic and Atmospheric Administration (NOAA) Earth System 

Research Laboratory (ESRL): Physical Science Division. I obtained weather data from August-

October 1895-2000, the earliest recorded weather data. The mean temperature and precipitation 

for each month were included in the output from NOAA ESRL. Decadal averages (1900-1909, 

1910-1919, 1920-1929, 1930-1939, 1940-1949, 1950-1959, 1960-1969, 1980-1989, and 1990-

1999) were obtained by taking the average value for the decade for each month (excluding 1895-

1899 as no data exists prior to 1895). Decadal averages were excluded from 1970-1979 due to 

lack of color data for the decade.   

 

Statistical Analyses 

All results were analyzed using SPSS v. 23 (IBM 2015). I used Pearson’s correlations to 

compare how plumage traits varied with year of collection. I used Pearson’s correlations to 

compare how plumage traits varied with decadal temperature and precipitation (regardless of 

season). However, because both years of collection and temperature were significantly related to 

most measures of color, I used standardized residuals of regression to control for 1) year of 

collection when investigating how geography and climate are associated with plumage and 2) 
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temperature when investigating how year of collection is associated with plumage color 

variables.  

 

Results 

Latitude and temperature and latitude and precipitation were significantly negatively correlated 

(Table 1). Longitude and temperature were significantly negatively correlated (Table 1), but 

longitude was not significantly associated with precipitation (Table 1). Further, temperature and 

precipitation were highly positively correlated (Table 1). Thus, for future analyses, I will use 

temperature, precipitation and longitude only.  

 

Structural UV-Blue Coloration 

When standardized by year, structural coloration brightness was significantly positively 

correlated with temperature (Figure 3, Table 2); such that males were more ornamented in 

warmer regions. However, when standardized by year, brightness was significantly negatively 

associated with precipitation and longitude (Table 2), suggesting that males were more 

ornamented in regions with low rainfall as well as in more easterly locations.  

When standardized by temperature, brightness was significantly positively associated 

with year of specimen collection (Figure 4, Table 3); such that males were more ornamented 

when collected in more recent times. 

 When standardized by year, UV-chroma was significantly positively correlated with 

temperature (Figure 3, Table 2), such that males were more ornamented in warmer regions. Also, 

when standardized by year, UV-chroma was significantly negatively associated with longitude, 

suggesting that birds had more-ornamented plumage in more easterly regions (Table 2). When 
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standardized by year, UV-chroma was significantly related to neither precipitation nor latitude 

(Table 2).  

When standardized by temperature, UV-chroma was significantly positively associated 

with year of collection (Figure 4, Table 3); such that specimens collected in more recent times 

displayed more-ornamented UV-chroma. 

 

Melanin-Based Coloration 

When standardized by year, chestnut brightness was significantly positively associated with 

temperature (Figure 3, Table 2), suggesting that males were less ornamented in warmer regions 

(Table 2). However, there was not significant relationship between chestnut brightness and 

precipitation (Table 2). When standardized by year, chestnut brightness was significantly 

negatively correlated with longitude (Table 2), such that males were more ornamented in more 

easterly locations.  

When standardized by temperature, brightness was not significantly correlated with year 

of collection (Figure 4, Table 3).  

 When standardized by year, chestnut red chroma, was not significantly associated with 

average decadal temperature (Figure 3, Table 2), decadal precipitation nor longitude (Table 2). 

 When standardized by temperature, chestnut red chroma was not significantly associated 

with year of specimen collection (Figure 4, Table 3). 

 

Discussion 

Year of specimen collection appeared to have strong influences on structural-based plumage but 

melanin-based plumage coloration was less effected; birds collected in more recent times 
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displayed brighter and more UV chromatic structural plumage coloration. These results suggest 

either feather degradation or accumulation of dust/dirt has occurred during museum storage or 

that wild birds are more colorful in recent compared to past decades. Further, even when 

controlling for the effects of time of feather collection, birds display more ornamented UV-blue 

coloration in warmer and wetter climates (more southern latitudes, eastern longitudes, and in 

locations in which birds are non-migratory). Although chestnut melanin-based coloration appears 

to be less influenced by geography, climate, and museum wear, males displayed less ornamented 

(lighter/brighter) chestnut (melanin-based) coloration when collected in warmer climates and in 

more westerly locations, suggesting that birds display less ornamented chestnut coloration in the 

same regions where they display more-ornamented UV-blue (structurally-based) plumage. 

Further, it appears that structural-based plumage is more influenced by year of collection than is 

melanin-based plumage, while both plumages appear to be affected by geographical location and 

climate. Moreover, 1) temperature appears to have more of an effect than precipitation on color 

variables and 2) brightness of both plumage types appear to be the most sensitive to climate and 

geographical influences than does chroma (spectral purity). 

 It is impossible to decouple temperature and precipitation, as these weather variables 

were significantly positively associated. However, color was statistically more closely tied to 

temperature than precipitation. In fact, precipitation was only a good predictor of the brightness 

of the UV-blue structural plumage, while temperature was a good predictor of brightness and UV 

chroma of the UV-blue structural plumage and the brightness of the chestnut melanin plumage. 

These results are perhaps not surprising as structural plumage in male eastern bluebirds has been 

shown to be sensitive to environmental conditions (Siefferman and Hill 2007; Doyle and 

Siefferman 2014). Condition dependence of structural coloration in male bluebirds should have a 
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strong influence on male fitness (Siefferman and Hill 2005b). Further, melanin colors have been 

shown to be less sensitive to environmental stress than structural coloration (McGraw et al. 

2002). Finally, these data corroborate research on single population of bluebirds followed for 13 

years, wherein structural coloration is more influenced than melanin coloration by weather 

conditions during molt (Author, Chapter 1). In Alabama, bluebirds tend to show more-

ornamented UV-blue structural coloration following years of high precipitation and lower 

temperature during molt (Author, Chapter 1).  

 I hypothesized that both plumage types would be subject to fading due to year of 

collection; yet, only structural coloration appeared to be more influenced by collection date than 

melanin coloration. Structural UV-blue coloration, when standardized for climatic and 

geographical trends, was still strongly correlated with year of collection, while melanin-based 

coloration was not. Indeed, both brightness and UV-chroma of structural coloration were 

positively associated with year of collection; males had more-ornamented structural plumage 

when collected in more recent times. In a study that used 24 eastern bluebird museum specimens 

over a time range from 1892 to 2003 to test for fading, significant interactions were found 

between year of collection and the UV spectrum, indicating that fading occurred more so in the 

UV regions (Armenta et al. 2008). Structural-based plumage has been shown to be highly subject 

to dust, oils, and feather-degrading bacteria (reviewed in Doucet and Hill 2009). UV chroma 

may be especially affected by the oils and dirt found on hands from handling the specimens, as 

they have absorption peaks in the UV (Andersson and Prager 2006). Further, structural-based 

plumage has been shown to be affected by feather degrading bacteria, as experimentally induced 

degradation of the barb cortex and keratin matrix increased brightness but decreased UV chroma 

of the UV-blue structural feathers in eastern bluebirds (Shawkey et al. 2007).  
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 However, if it is assumed that specimen fading was not the cause of the strong positive 

trend with year of collection, it is possible that birds are more ornamented in recent times 

because sexual selection is stronger now than in past decades. This change could be due to 

stronger selection or because structural coloration is influenced by diet, by changes in food 

availability over time. Indeed, weather has been shown to affect abundance of arthropods 

(reviewed in Williams 1961), and, Alabama bluebirds tend to show more-ornamented UV-blue 

structural coloration following years of high precipitation and lower temperature during molt 

(Author, Chapter 1). A similar long-term study of the carotenoid pigmentation of American 

Redstarts (Setophaga ruticilla) found that ornamentation tracked weather during molt and the 

authors attributed this to associations between weather during molt and insect abundance 

(Reudink et al. 2015). Climate change, in general, has been shown to influence reproductive 

output, and timing of migration and breeding in birds. Charmantier et al. (2008) show that mean 

laying date for great tits (Parus major) has advanced about 14 days in the time span from 1961-

2007. Further, the timing of arrival on breeding territories and over wintering grounds have 

advanced in 17 species of birds that breed in the United Kingdom in response to climate changes 

and changes in food abundance (Cotton 2003). Change in structural coloration over time towards 

brighter UV chroma and brightness could be a response to increases in food availability during 

molt. 

 Melanin-based plumage, however, is less sensitive than structural and carotenoid 

plumage coloration to environmental variation during molt (McGraw et al. 2002; McGraw 

2006). Moreover, melanin-based coloration is less susceptible to feather degrading bacteria 

(Goldstein et al. 2004) and physical damage (McGraw 2006) than is structural coloration. 

Further, studies of museum-based fading of the melanin-based coloration of eastern bluebird 
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museum specimens showed no effect of specimen age on brightness (Armenta et al. 2008). 

Chroma of melanin plumage, however, was found to be higher in live birds compared to museum 

specimens, and this trend was especially pronounced within older specimens (Doucet and Hill 

2009). My results, however, suggest that red chroma of chestnut melanin is not susceptible to 

changes due to specimen age. Overall, it seems that melanin coloration overall more stable than 

structural-based plumage, leading me to believe that the positive trend associated with breast 

brightness and temperature is a valid trend not driven by museum fading or damage.  

 Other biogeographical studies have found geographical trends in phenotypic traits of 

conspecifics. For example, brightness of melanin coloration is associated with climate (e.g. 

rainfall) and capture date in Kentish plovers (Charadrius alexandrinus) from five geographically 

distinct populations (Arguelles-Tico et al. 2015). Further, brightness of structural coloration of 

Eurasian teals (Anas crecca) is associated with breeding location longitude (Legagneux et al. 

2012). 

 In conclusion, for eastern bluebirds, it is not possible to fully untangle whether structural 

color fades with time or whether birds are more ornamented in recent decades. My data support 

the idea melanin-based plumage data are more accurate than structurally-based plumage when 

using long-term museum data to investigate how traits change over time geography or climates. 

Overall, museum data are valuable in understanding how plumage might have changed in 

climate over time. The relationships between structural coloration and weather and geography 

suggest that the environment during molt likely allows for greater ornamentation in populations 

that do not migrate and that experience warmer and wetter conditions during molt. This work 

demonstrates the importance of long-term biological data and sheds light on how a changing 

climate can influence sexually selected traits in animals across geographic regions. 
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Figure 1 Migratory status map created in ESRI ArcMap Desktop. Migratory patterns obtained 

from USGS National Gap Analysis Program, 

<https://gapanalysis.usgs.gov/species/data/download/#forest>  
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Figure 2 U.S. Climate Division Map. Image obtained from NOAA National Centers for 

Environmental Information, < https://www.ncdc.noaa.gov/monitoring-references/maps/us-

climate-divisions.php>. 
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 Temperature Decade Average Precipitation Decade Average 
Latitude -0.963 (p < 0.0001) -0.671 (p < 0.0001) 
Longitude -0.495 (p < 0.0001) 0.067 (p = 0.412) 
Precipitation Decade Average 0.592 (p < 0.0001)   

Table 1 Pearson’s Correlations between geography and weather (n = 152) with significance 
values in parentheses.  
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 Temperature Precipitation Latitude Longitude 

Rump Brightness  

                                              

0.285 (< 0.001) 

 

0.165 (0.042) -0.305 (< 0.001) -0.232 (0.004) 

 

Rump UV Chroma                                                

 

0.182 (0.025) 

 

0.057 (0.484) 

 

 

-0.154 (0.059) 

 

-0.217 (0.007) 

 

Breast Brightness                 

                                          

 

0.252 (0.002) 

 

0.135 (0.097) 

 

-0.247 (0.002) -0.204 (0.012) 

Breast Red Chroma                

 

-0.042 (0.605) -0.002 (0.985) 

 

0.061 (0.458) 

 

-0.050 (0.544) 

Table 2 Pearson’s correlations of plumage characteristics of male eastern bluebirds and decadal 

mean temperature, decadal mean precipitation, latitude and longitude (n = 152) with significance 

values (P) in parentheses. All color variables are standardized by year. 
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 Year 

Rump Brightness  r = 0.191, p = 0.018 

Rump UV Chroma                  r = 0.506, p < 0.001 

Breast Brightness                   r = 0.124, p = 0.129 

Breast Red Chroma                r = 0.129, p = 0.11 

Table 3 Pearson’s correlations between plumage traits standardized by temperature and year of 

collection for male eastern bluebirds (n = 152). 
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Figure 3 Relationships 
between color variables 
(standardized by year) and 
temperature. Lines indicate 
significant relationships.   
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Figure 4 Relationships 
between color variables 
(standardized by 
temperature) and year of 
collection. Lines indicate 
significant relationships. 
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